Kardar–Parisi–Zhang universality in a one-dimensional polariton condensate

  • Krug, J. & Meakin, P. Universal finite-size effects in the rate of growth processes. J. Phys. A 23L987 (1990).

    ADS Google Scholar

  • Wakita, J.-i, Itoh, H., Matsuyama, T. & Matsushita, M. Self-affinity for the growing interface of bacterial colonies. J. Phys. Soc. jpn 6667–72 (1997).

    ADS CAS Google Scholar

  • Ljubotina, M., Žnidarič, M. & Prosen, T. Spin diffusion from an inhomogeneous quench in an integrable system. Nat. Commun. 816117 (2017).

    ADS CAS PubMed PubMed Central MATH Google Scholar

  • Ljubotina, M., Žnidarič, M. & Prosen, T. Kardar–Parisi–Zhang physics in the quantum Heisenberg magnet. Phys. Rev. Lett. 122210602 (2019).

    ADS CAS PubMed Google Scholar

  • Scheie, A. et al. Detection of Kardar–Parisi–Zhang hydrodynamics in a quantum Heisenberg spin-1/2 chain. Nat. Phys. 17726–730 (2021).

    CAS Google Scholar

  • Wei, D. et al. Quantum gas microscopy of Kardar–Parisi–Zhang superdiffusion. Science 376716–720 (2022).

    ADS CAS PubMed Google Scholar

  • Kardar, M., Parisi, G. & Zhang, Y.-C. Dynamic scaling of growing interfaces. Phys. Rev. Lett. 56889–892 (1986).

    ADS CAS PubMed MATH Google Scholar

  • Altman, E., Sieberer, LM, Chen, L., Diehl, S. & Toner, J. Two-dimensional superfluidity of exciton polaritons requires strong anisotropy. Phys. Rev. X 5011017 (2015).

    CAS Google Scholar

  • Ji, K., Gladilin, VN & Wouters, M. Temporal coherence of one-dimensional nonequilibrium quantum fluids. Phys. Rev. B 91045301 (2015).

    ADS Google Scholar

  • He, L., Sieberer, LM, Altman, E. & Diehl, S. Scaling properties of one-dimensional driven-dissipative condensates. Phys. Rev. B 92155307 (2015).

    ADS Google Scholar

  • Zamora, A., Sieberer, L., Dunnett, K., Diehl, S. & Szymańska, M. Tuning across universalities with a driven open condensate. Phys. Rev. X 7041006 (2017).

    Google Scholar

  • Comaron, P. et al. Dynamical critical exponents in driven-dissipative quantum systems. Phys. Rev. Lett. 121095302 (2018).

    ADS CAS PubMed Google Scholar

  • Squizzato, D., Canet, L. & Minguzzi, A. Kardar–Parisi–Zhang universality in the phase distributions of one-dimensional exciton–polaritons. Phys. Rev. B 97195453 (2018).

    ADS CAS Google Scholar

  • Amelio, I. & Carusotto, I. Theory of the coherence of topological lasers. Phys. Rev. X 10041060 (2020).

    CAS Google Scholar

  • Ferrier, A., Zamora, A., Dagvadorj, G. & Szymańska, M. Searching for the Kardar–Parisi–Zhang phase in microcavity polaritons. Phys. Rev. B 105205301 (2022)

    ADS CAS Google Scholar

  • Deligiannis, K., Squizzato, D., Minguzzi, A. & Canet, L. Accessing Kardar–Parisi–Zhang universality sub-classes with exciton polaritons. Europhys. Lett. 13267004 (2021).

    ADS Google Scholar

  • Mei, Q., Ji, K. & Wouters, M. Spatiotemporal scaling of two-dimensional nonequilibrium exciton–polariton systems with weak interactions. Phys. Rev. B 103045302 (2021).

    ADS CAS Google Scholar

  • Family, F. & Vicsek, T. Scaling of the active zone in the eden process on percolation networks and the ballistic deposition model. J. Phys. A 18L75 (1985).

    ADS Google Scholar

  • Halpin-Healy, T. & Zhang, Y.-C. Kinetic roughening phenomena, stochastic growth, directed polymers and all that. Aspects of multidisciplinary statistical mechanics. Phys. Rep. 254215–414 (1995).

    ADS Google Scholar

  • Krug, J. Origins of scale invariance in growth processes. Adv. Phys. 46139–282 (1997).

    ADS CAS Google Scholar

  • Takeuchi, KA An appetizer to modern developments on the Kardar–Parisi–Zhang universality class. Physica A 50477–105 (2018).

    ADS MathSciNet MATH Google Scholar

  • Lauter, R., Mitra, A. & Marquardt, F. From Kardar–Parisi–Zhang scaling to explosive desynchronization in arrays of limit-cycle oscillators. Phys. Rev. E 96012220 (2017).

    ADS MathSciNet PubMed Google Scholar

  • Chen, L. & Toner, J. et al. Universality for moving stripes: a hydrodynamic theory of polar active smectics. Phys. Rev. Lett. 111088701 (2013).

    ADS PubMed Google Scholar

  • He, L., Sieberer, LM & Diehl, S. Space–time vortex driven crossover and vortex turbulence phase transition in one-dimensional driven open condensates. Phys. Rev. Lett. 118085301 (2017).

    ADS PubMed Google Scholar

  • Carusotto, I. & Ciuti, C. Quantum fluids of light. Rev. Mod. Phys. 85299–366 (2013).

    ADS Google Scholar

  • Schneider, C. et al. Exciton–polariton trapping and potential landscape engineering. Rep. Prog. Phys. 80016503 (2016).

    ADS PubMed Google Scholar

  • Deng, H., Weihs, G., Santori, C., Bloch, J. & Yamamoto, Y. Condensation of semiconductor microcavity exciton polaritons. Science 298199–202 (2002).

    ADS CAS PubMed Google Scholar

  • Kasprzak, J. et al. Bose–Einstein condensation of exciton polaritons. Nature 443409–414 (2006).

    ADS CAS PubMed Google Scholar

  • Love, A. et al. Intrinsic decoherence mechanisms in the microcavity polariton condensate. Phys. Rev. Lett. 101067404 (2008).

    ADS CAS PubMed Google Scholar

  • Roumpos, G. et al. Power-law decay of the spatial correlation function in exciton-polariton condensates. Proc. Natl Acad. Sci. 1096467–6472 (2012).

    ADS CAS PubMed PubMed Central Google Scholar

  • Fischer, J. et al. Spatial coherence properties of one dimensional exciton–polariton condensates. Phys. Rev. Lett. 113203902 (2014).

    ADS CAS PubMed Google Scholar

  • Bobrovska, N., Ostrovskaya, EA & Matuszewski, M. Stability and spatial coherence of nonresonantly pumped exciton-polariton condensates. Phys. Rev. B 90205304 (2014).

    ADS Google Scholar

  • Daskalakis, KS, Maier, SA & Kéna-Cohen, S. Spatial coherence and stability in a disordered organic polariton condensate. Phys. Rev. Lett. 115035301 (2015).

    ADS CAS PubMed Google Scholar

  • Estrecho, E. et al. Single-shot condensation of exciton polaritons and the hole burning effect. Nat. Commun. 92944 (2018).

    ADS CAS PubMed PubMed Central Google Scholar

  • Bobrovska, N., Matuszewski, M., Daskalakis, KS, Maier, SA & Kéna-Cohen, S. Dynamical instability of a nonequilibrium exciton–polariton condensate. ACS Photon. 5111–118 (2018).

    CAS Google Scholar

  • Smirnov, LA, Smirnova, DA, Ostrovskaya, EA & Kivshar, YS Dynamics and stability of dark solitons in exciton–polariton condensates. Phys. Rev. B 89235310 (2014).

    ADS Google Scholar

  • Liew, TCH et al. Instability-induced formation and nonequilibrium dynamics of phase defects in polariton condensates. Phys. Rev. B 91085413 (2015).

    ADS Google Scholar

  • Caputo, D. et al. Topological order and thermal equilibrium in polariton condensates. Nat. Mater. 17145–151 (2018).

    ADS CAS PubMed Google Scholar

  • Baboux, F. et al. Unstable and stable regimes of polariton condensation. Optica 51163–1170 (2018).

    ADS Google Scholar

  • Edwards, SF & Wilkinson, D. The surface statistics of a granular aggregate. Proc. R. Soc. Lond. A 38117–31 (1982).

    ADS Google Scholar

  • Prähofer, M. & Spohn, H. Exact scaling functions for one-dimensional stationary kpz growth. J. Stat. Phys. 115255–279 (2004).

    ADS MathSciNet MATH Google Scholar

  • Dennis, GR, Hope, JJ & Johnsson, MT Xmds2: fast, scalable simulation of coupled stochastic partial differential equations. Compute. Phys. Commun. 184201–208 (2013).

    ADS MathSciNet CAS Google Scholar

  • Werner, M. & Drummond, P. Robust algorithms for solving stochastic partial differential equations. J. Comput. Phys. 132312–326 (1997).

    ADS MathSciNet MATH Google Scholar

  • Leave a Reply

    Your email address will not be published.